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Fig. 1: In this paper, we propose a wavelet-based video codec that is able to load and decode the data of 360° videos viewport-
dependently by exploiting the properties of the wavelet transform. While the quality is on par with state-of-the-art video codecs,
we can achieve significantly faster playback times. Here, a visual comparison of our codec is given with HEVC, AV1 and the
uncompressed reference. The samples are out of the computer-generated City video (left), all with 8k full-frame resolution.

Abstract— In this paper, we propose a wavelet-based video codec specifically designed for VR displays that enables real-time playback
of high-resolution 360° videos. Our codec exploits the fact that only a fraction of the full 360° video frame is visible on the display at
any time. To load and decode the video viewport-dependently in real time, we make use of the wavelet transform for intra- as well as
inter-frame coding. Thereby, the relevant content is directly streamed from the drive, without the need to hold the entire frames in
memory. With an average of 193 frames per second at 8192×8192 -pixel full-frame resolution, the conducted evaluation demonstrates
that our codec’s decoding performance is up to 272% higher than that of the state-of-the-art video codecs H.265 and AV1 for typical VR
displays. By means of a perceptual study, we further illustrate the necessity of high frame rates for a better VR experience. Finally, we
demonstrate how our wavelet-based codec can also directly be used in conjunction with foveation for further performance increase.

1 INTRODUCTION

Codecs provide efficient compression allowing to store hundreds of
videos on a single drive. This efficiency results from a precise adapta-
tion to their specific application. Video codecs like HEVC/H.265 or
AV1 use the discrete cosine transform (DCT) and motion compensation
for high compression rates at a reasonable perceptual quality. The
high compression, however, requires complex coding procedures. The
specific hardware decoders of modern graphics cards compensate for
some of this decoding load.

360° videos are a sophisticated form of viewing experience which
have become known with the spread of virtual reality (VR) technology.
In 360° videos the user can change their view anywhere, since the
information of the entire space is available (three degrees of freedom
(DOF)). This free exploration is not possible with traditional videos
where the field of view (FOV) is limited. Accordingly, 360° videos
are best suited for an immersive user experience for video playback
in VR. For comparable quality, the resolution of 360° videos must
significantly exceed those of videos with a discrete view, since the
representation on the display device only corresponds to a fraction of
the whole video frame. For a modern VR headset with 2000x2000-pixel
resolution per eye and 90° FOV, a comparably resolved 360° video
would require 8000x8000 pixels (stereo) with up to 120Hz temporal
resolution. However, only the part of the frame that lies within the
device’s viewport at the time of decoding is relevant for rendering.
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Current DCT-based codecs do not allow to load or decode only a defined
part of a frame due to their complex non-linear structure. Accordingly,
with 360° videos the common practice is to load, upload, and decode
the entire 360° frame, even though only a small part of the frame
is considered for the rendering. Furthermore, the recording quality
of 360° cameras is limited. Consequently, the resolution and frame
rate of 360° videos nowadays do not come close to the quality of the
renderings of virtual environments. Although there are some existing
ideas that already try to improve the compression – e.g. tiling the frame
into separate regions – these approaches often go against the basic
compression concept of DCT and are only a compromise at the expense
of compression efficiency.

An alternative to the DCT for compression is the wavelet transform,
which offers two decisive advantages over the former: (1) different parts
of the image can be loaded and decoded individually, e.g. the viewport
of an head-mounted display (HMD); (2) the encoding is performed
in frequency layers, which are each halved in frequency. Decoding
an area in fewer steps is equivalent to displaying the image area at a
lower resolution. Early attempts to use wavelet transform for image
compression were limited to traditional presentations with a discrete
FOV and have not gained wide use.

In this paper, we propose a wavelet-based codec for the compression
of 360° videos. We particularly aim for high display speeds of high-
resolution videos. Our implementation of the wavelet-based codec
uses the wavelet transform for inter- and intra-frame compression.
To the best of our knowledge, this is the first codec for 360° videos
based on wavelet transforms. In comparison with modern codecs
(HEVC/H.265 and AV1) and related work, we show that our wavelet-
based approach offers a significant speed advantage while providing a
comparable video quality and reasonable compression rate. In addition,
we introduce foveated decoding. With foveated decoding the properties
of the wavelets are used to gradually decrease the resolution with the
distance from the focal point. Such foveation is, so far, only known from
virtual scenes and offers further opportunities to improve both decoding
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speed and image perception. The Code for our codec is available at
https://github.com/ColinGroth/Wavelet_Codec_360.

The contributions of the paper are summarized as follows:
• a novel approach to encode and decode videos for fast viewport-

dependent playback based on wavelet transforms

• wavelet-based inter-frame transform without keyframes

• a technique to implicitly apply foveated rendering for wavelet-
encoded videos during run-time

• objective and perceptual evaluation and comparisons with state-
of-the-art video codecs and related work

2 RELATED WORK

Loading the entire frame for 360° video playback in VR is inefficient
since only a fraction of the frame is actually rendered. However, this
procedure is the most common practice, as it reduces the need to adjust
the standard video pipeline. In the following, we first discuss previous
work aiming at a more resource-efficient presentation by adapting
existing codecs and, in the second part, we introduce former attempts
for wavelet-based codecs.

2.1 Viewport-Adaptive Display Techniques for Videos
Zare et al. [36] proposed to use a tiling scheme to increase the decod-
ing speed of streamed 360° HEVC videos. Their experimental setup
consisted of a pipeline with a dedicated server and client side. On the
server side, the same video was encoded in high and low resolution.
With the motion constrained tile sets (MCTS) extension of HEVC the
tiling was enabled for both versions of the video. The client, on the
other hand, requested the required tile sets from the server based on the
viewport. The authors tested different tiling schemes. The scheme with
the most tiles (18 tiles) showed the highest bitrate savings (−40% based
on Bjontegaard Delta Bitrate BD-BR [2]). However, the compression
losses increase proportionally with the number of used tiles, since all
tiles are saved independently.

The tiling approach was later officially formulated by the Moving
Picture Experts Group (MPEG) into the omnidirectional media format
(OMAF) standard for storage and distribution of 360° videos [5]. The
idea of OMAF is comparable to the work of Zare et al. [36] and is
applied to HEVC or AVC video codecs. The viewport-dependent
streaming also uses MCTS to split the frames into tiles, each encoded
in different qualities [11].

Sreedhar et al. [29] also recognized the technical challenges of band-
width associated with high-resolution 360° videos. The main focus of
their work was the mapping techniques in which the recorded spherical
scenes are packed in a rectangular frame. The most used mapping
techniques are equirectangle and cubemap projection, which were also
found as the most effective in their scenario. For the comparison, the
authors presented a methodology of the rate-distortion performance of
the schemes.

In the work of Corbillon et al. [7] the 360° videos are separated
in individual tiles and offered in different resolutions. Unlike former
works, the single tiles are created in different versions with only a
selected part of every tile in a better visual quality. While the 360° video
is streamed, the client communicates its viewpoint to the server which
selects the tiles so that the viewpoint is in the higher quality region.
The paper does not specify actual display speeds, but it should be clear
that the technology can save bandwidth.

The performance of 360°videos can be improved not only on the soft-
ware side. Recent works investigate how computation reduction and en-
ergy efficiency can be achieved through hardware design. Sun et al. [31]
designed special hardware to accelerate the perspective projection on
a FPGA. The results show significant energy reduction without a loss
of performance. Zhao et al. [38] leverages redundancies across frames
and tiles of left and right eye projection. Results indicate a computation
reduction of 34% and energy saving of 17% for implementations on
a GPU or FPGA. Leng et al. [20] propose energy-efficient VR video
processing by optimising the projective transformation with semantic-
aware streaming on the server-side and hardware-accelerated rendering

on the client. The authors demonstrate that up to 42% energy of the VR
device can be saved for 360° video content using their system design.

2.2 Wavelet based codecs
Probably the best known use of wavelets for imagery is the JPEG2000
image compression standard [22, 32]. At the turn of the millennium,
it initiated a new form of image compression and was meant to re-
place DCT-based image compression formats. JPEG2000 supports
lossless and lossy compression. The wavelet transform operates with
the biorthogonal wavelets, either the Cohen–Daubechies–Feauveau
(CDF) 9/7 wavelet [6] for lossy compression or the LeGall-Tabatabai
(LGT) 5/3 wavelet [18] for lossless compression. The standard has
four levels of decomposition as a default since there is not significant
improvement in using higher decomposition levels when compressing
images [15]. One general advantage of wavelet compressed imagery
is the progressive decoding, so that the quality of the visualisation
improves progressively when more information is received. This pro-
gressive decoding is also supported in JPEG2000.

The JPEG2000 image standard was later extended to include video
files. The extension is known as Motion JPEG2000 and is based on
the MP4 format. This video standard uses the JPEG2000 coding for
the compression of the individual frames. An inter-frame compression
does not take place. Thus, Motion JPEG2000 is more of a container
format for the joint wrapping of JPEG2000 compressed frames. Note
that our video codec differs clearly to the Motion JPEG2000 standard.
We apply a wavelet-based inter-frame transform to successive frames
and use a special data structure that allows for viewport-adaptive data
streaming. However, we took inspiration from JPEG2000 to design the
frame-wise transform of our pipeline, e.g. we use the CDF 9/7 wavelet
to obtain frequency information of single frames.

Efforts to create video codecs based on wavelet compression are rare
and nowadays exclusively experimental. The most extensive attempt
to create a wavelet-based video format to date was undertaken by
BBC Research in 2008 [33]. The resulting versions of the codec
were named Dirac and Schrödinger in honour of the Nobel Prize-
winning physicists. Dirac supports lossy and lossless coding for which
it uses the same wavelets as JPEG2000 (CDF 9/7 wavelet or LGT 5/3
wavelet). The motion compensation is performed with the overlapped-
block motion compensation (OBMC) logic for an effective inter-frame
prediction [24]. Unfortunately, this overlap also prevents effective intra-
prediction, since there are no unique separations for overlapping blocks,
as is the case with common DCT-based codecs. The overlapping-block
logic further prevents an efficient use of viewport-dependent decoding
and is only designed for full frame data retrieval.

However, the codec could not gain wide popularity and further
development was discontinued more than a decade ago. The reasons
for the codecs limited success are not entirely clear, but may be related
to an inability to provide significant improvement over established
codecs like H264. Dirac and Schrödinger are now abandoned and no
longer available.

3 METHOD

Two concepts that most video codecs apply for data compression are
intra- and inter-frame coding. In practice, these methods are commonly
applied with some information loss to achieve better compression ratios.
Intra-frame coding usually refers to the transformation of the data of
one frame to a different representation that can be compressed more
efficiently. Inter-frame coding utilizes redundancies between multiple
frames to reduce the data size. In the following, we describe how we
implement both concepts with wavelet transforms. Figure 2 shows an
overview of how this transformations are integrated in our program
flow for the encoding and decoding of 360° videos.

3.1 Frame-wise Transform
The core of the frame-based compression of our codec is a 2D fast
wavelet transform (FWT). Similar to other codecs, the transform of
the frame data allows for a better compression, which in the raw state
is too large to be stored. For example, a one minute 360° video in
8k resolution would contain around 300GB uncompressed data. We
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Fig. 2: Our program flow for encoding (blue) and decoding (orange) a video with our wavelet-based codec.

transform an input frame s of (N ×M) pixels for a discrete 2D position
(x,y) and frequency γ by the wavelet transform W with the mother
wavelet ψ .

Wψ s(γ,x,y) =
N

∑
i=0

M

∑
j=0

ψγ,x,y(i, j)s(i, j) (1)

To compress the transformed frame Wψ s all coefficients below a certain
threshold Ts are set to zero, so that:

W ′
ψ s :=

{
Wψ s, i f |Wψ s|> Ts,

0, otherwise
(2)

For a properly chosen Ts, this operation has only minor implications for
the quality of the reconstructed image. This is especially true for high
frequencies and is a general characteristic of the frequency domain.
Usually, in natural images most of the information is contained in the
low frequencies, which are represented by only a small number of
coefficients [34]. As usual for the FWT, with every step of the 2D
transformation, the resolution of the image approximation is halved in
both dimensions. In Wψ this is addressed by the frequency layers over
γ .

Former research has shown that the discrete wavelet transform can
achieve better image reconstruction than a DCT-based method at high
bit compression ratios [3]. For the frame-wise transformation of the
image we use the CDF 9/7 wavelet [6]. The CDF wavelet is known to
perform especially good on natural imagery and is also used for lossy
compression in the JPEG2000 standard [15].

During playback, the compressed video information is decoded
with an inverse fast wavelet transform (iFWT) to obtain the original
images. This reconstruction is not conducted for the entire image, but
only for the part of the 360° panorama that lies in the viewport of the
display device. For a viewport-dependent reconstruction, we define
the location of the viewport on a low resolution representation of the
frame in binary form. This binary mask is uploaded together with
the wavelet coefficients and is used for the inverse wavelet transform.
The resolution of the binary representation is 256×256 pixels for a 8k
stereo frame and can define arbitrary reconstruction shapes.

In theory, the transform can be performed until only one pixel de-
fines the lowest frequency over the whole image. However, the low-
frequency levels of the wavelet transform contain fewer discrete data
points since the high-resolution in the frequency domain results in
a low resolution in time due to the Heisenberg theorem [12]. Also,
the wavelet coefficient values of these pixels can only be compressed
inefficiently because the low-frequency information is significantly
more important than high frequencies in natural image reconstruction.
By default, we perform the wavelet transform for lmax = log2(

N
32 )−2

levels. For the number of wavelet levels, we took inspiration from the
JPEG2000 standard, but also performed several pilot studies. While

we found 6 levels to be the optimal default solution for 8k videos, the
number of wavelet levels can be chosen individually per video.

3.2 Inter-Frame Coding

Inter-frame coding describes the compression of temporal information.
In videos, the time component t is represented implicitly by a set of
successive frames. In modern codecs the inter-frame compression is
performed with keyframes and motion vectors where only the informa-
tion differences are encoded. While this technique offers impressive
compression rates, a compression with keyframes has the disadvan-
tage that its speed depends on the linear information retrieval. When
the video is skipped, all information since the last keyframe has to be
reloaded first. With our codec we wanted to get rid of this disadvantage
and at the same time maintain a good compression rate between inter-
frames. To achieve this purpose we apply a second one-dimensional
wavelet transform that encodes the temporal pixel differences. The
second wavelet transform is applied on a set of wavelet images re-
sulting from the frame-wise wavelet transform Wψ s. Here, we use a
one-dimensional form of Wψ with s(γ, t) for the frequency γ of the
temporal changes of every pixel over time. In other words, our wavelet
based inter-frame transform encodes the frequency changes over time.
Typically, even with movement in the frame the temporal information
only changes on single frequencies. All frequencies that do not or
only slightly change are compressed by our inter-frame transform. As
result, the speed of the decoding is unaffected by the direction in which
the viewport moves. In theory both, the frame-wise transform and the
inter-frame transform, can be combined to one 3D wavelet transform.
However, this 3D transform would not offer us the possibility to de-
code different areas of a frame in different resolutions for the same
computational costs. Furthermore, the separation allows us to apply
different wavelets and thresholds per transform and respond adaptively
to individual circumstances.

Every inter-frame transform of n consecutive frames we call inter-
frame set. Thereby, n is a power of two value. The number of frames
per inter-frame set can be defined per video and may be bigger the
less motion is in the video. In contrast to the frame-wise transform,
the inter-frame transform is always executed to the last level. For the
inter-frame wavelet transform we use the Haar wavelet [10]. The Haar
wavelet is the only wavelet with no overlapping of the wavelet filters
and can therefore be reconstructed by loading only one coefficient per
level for the high and low pass filtering. Reconstruction of one specific
pixel by a Haar wavelet transform with n levels only requires log2(n)
additions of the correct wavelet coefficients multiplied by the high pass
filter position (either −1 or 1). As a result, for the inverse inter-frame
transform we can iterate over the uploaded wavelets rather than over
all pixels of the target section. This characteristic is unique to the Haar
wavelet and allows a rapid inter-frame reconstruction. The speed of
the inter-frame reconstruction is important since the inverse inter-frame
transform runs on log2(n) frames every time one frame is decomposed.
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Fig. 3: Data arrangement of our video format. The sizes of each section are given by an example video in 8k resolution.

By iterating over the uploaded pixels rather than a target section we
implicitly synthesise only the part of the image that is in our defined
FOV.

3.3 Thresholding
In order to achieve the necessary storage savings, we have to determine
which wavelet coefficients are least essential for the reconstruction. We
will refer to this step as thresholding. The chosen threshold value is
decisive for the intensity of the compression. Thereby, the threshold
always represents a trade-off between quality of the reconstructed im-
age and size of the video file. The threshold of 0 represents lossless
compression while a threshold of 1 produces the smallest file. Recon-
structing an image with too little frequency information may result in a
blurry representation with less details. We derive a threshold T from a
user-defined constant α and the level l of the transform:

T (x,y) = α

(
lmax − l

lmax

)2
+H, (3)

where H specifies a mapping factor which depends on the mapping tech-
nique (cf. Sec. 3.6). In the encoding, the frames are thresholded twice:
once after the frame-wise 2D FWT, and again following the inter-frame
transform. We use two separate threshold operations as both wavelet
transforms aim for a different encoding: The frame-wise transform
encodes the different frequency information in the respective spatial
resolutions. The inter-frame transform encodes temporal frequency
information of every wavelet coefficient. Thresholding the values only
once is possible but, in our experience, can lead to unwanted inter-
actions and a worse compression rate. Both thresholding operations
are independent and have their own threshold value. While the first
thresholding is applied on every frame independently, the thresholding
of the inter-frames considers all n frames of the inter-frame set. In
this latter thresholding operation, the different levels are defined by the
relative frame number from t rather than the pixel position inside the
frame.

High frequency information was found to be less important for the
perceptual quality of an image than low frequency information [34].
We scale the threshold by the frequency level of each coefficient in a
quadratic function (cf. Eq. 3). Accordingly, more coefficients may be
zeroed out at high frequencies. This thresholding weighting follows
common procedures of other codecs like JPEG2000 [22, 32].

Quantization: Similar to other codecs, we represent the color values
of the pixels in the video file by one byte per color component. In the
quantization, the 32 bit float color components of the wavelet transform
are mapped to the byte representation of the compressed output. We use
the extreme values of the wavelet coefficients for normalization in order
to achieve the highest possible spatial resolution in this discretization.
Therefore, one discrete color value cd is defined by

cd =
cn − cmin

cmax − cmin
∗255 (4)

with cn as the floating-point representation of the n-th pixel and
cmin and cmax as the minimum and maximum values of all coefficients,
respectively. The normalization is performed with a separate minimum
and maximum for the approximation area (last layer of the transform)
and the wavelet layer and for each inter-frame. The normalization is
inverted during reconstruction. The minimum and maximum values are
stored with the metadata in the file.

3.4 File Format
The structure of our video file is illustrated in Figure 3. We designed
the layout to allow for a fast and viewport-dependent streaming of the
data. Starting with a file header, general information on the video is
offered. This data includes the number of frames, size of the frames
and number of levels of the wavelet transform. Following the header,
metadata information on every single frame is provided. This frame-
wise metadata includes information about where the frame starts and
ends in the file or the overall number of wavelets. The frame metadata
also provides information on the individual levels of this frame. The
header as well as the entire metadata are preloaded when the video is
started and are kept in the working memory.

The position (x,y) of one particular wavelet coefficient within the
frame is given by an index that is saved along with the wavelet value.
However, due to the compression, the position of individual coefficients
within the file is unknown. While it is possible to find the data for (x,y)
with binary search on the video data, this inconsistent access to the
storage drive adds an unwanted delay to the loading process. Instead
we divide the transformed frames into a logical grid of small blocks
(default size 32× 32-pixel). This block allocation is only relevant
for the compression but does not affect the wavelet transforms which
operate on the entire images. Note, that this is different from blocking
in DCT. In the video file we store one pointer for each block, located in
the BlockEnd section (see Figure 3). This pointer indicates where the
last wavelet coefficient inside the respective block can be found in the
video file. In the file the coefficients are stored block after block, which
allows a whole series of blocks to be loaded by two of these block-end
pointers. During decoding, the block pointers of a frame are preloaded
before the frame is processed. By alternately storing the block-end
and wavelet data packages of the frames in the video file we can avoid
compute-intensive rearrangements of the file during encoding. Inside
one block of wavelet coefficients or block-end information the data is
ordered level-wise starting with the lowest frequency layer.

3.5 Parallel Wavelet Processing
Since VR users move their head, the part of a 360° video that is rendered
can change continuously. These viewpoint changes complicate the
buffering of subsequent frames with a viewport-dependent video stream.
However, buffering is necessary to avoid load peaks and latencies
that disrupt the virtual experience and can induce cybersickness [30].
Therefore, we load the viewport data of the next frames asynchronously
while the current frame is decoded. Until the time of rendering, all
frames are updated continuously in case that the look direction changes.
The number of frames that are preloaded corresponds to the inter-
frame size. Preparing more frames is not always useful, as the view
direction may change strongly over longer periods of time. During our
experiments no substantial latency was measured that arose from the
buffering.

Due to the inter-frame compression, one frame is reconstructed by
the wavelet coefficients stored in multiple inter-frames of the respective
inter-frame set. We rebuild the wavelet representation Wψ s of one
frame on the GPU while we already upload the wavelet data for the
next inter-frame in parallel (see Figure 4). This rebuild already includes
the inverse inter-frame transform, as described in Section 3.2. The
reconstruction of the original frame by the 2D iFWT is performed once
all inter-frames are processed and the inverse inter-frame transform is
completed.
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3.6 Frame Mapping
360° videos are representations of a recorded 3D sphere, brought to a
rectangular frame by a projection. The position of the information in
the projected frame is defined by its mapping. Among the most popular
mapping techniques are equirectangular mapping and cubemaps. Our
codec is defined to be independent of the mapping technique. As
the reconstructed areas are given in a low resolution presentation of
the frame (cf. Sec. 3.1), the areas needed for the frame mapping can
be set in direct relation to the final reconstruction. We render the
final re-projection of the FOV to the spherical presentation in an own
shader which is run after the inverse wavelet transform is completed.
This shader can react on multiple mapping types and also considers
the stereo images. For the experiments we use the equirectangular
projection. We tackle the redundancies in the pixel information near the
poles by gradually increasing the mapping factor H towards the poles.
For an equirectangular projected frame with the dimension S we define
H(y) = 1− sin(yπ/Sy). With the adjusted threshold, we experience
equal performance at all viewing angles, including upward views.

3.7 Foveated Decoding
The information density of visual representations of the human eye
are not equally distributed [28]. The images created on the retina of
the human visual system follow a qualitative decline starting from
the eye’s fixation point. While people can perceive the full resolution
of about one sixtieth of a degree in the fovea around the focus point,
the information in the peripheral visual area is significantly lower in
resolution [17].

So far we only discussed full resolution reconstructions of the view-
port. However, when the eye gaze direction of the observer is available
by eye tracking, we can utilise the properties of the wavelet transform
to achieve what we call foveated decoding. With foveated decoding
the resolution gradually decreases with the distance from the fovea.
Our method is comparable to classical foveated rendering, except that
in the periphery the decoding is accelerated while the rendering load
is constant. The results are bandwidth savings and higher playback
speeds.

For the foveated decoding, we utilise the level-wise structure of
the wavelet transform. As described in Section 3.1, a wavelet repre-
sentation is composed of individual levels, each corresponding to a
defined frequency interval γ . Instead of loading the same FOV at each
level, the full FOV of the viewport is loaded and rebuild only at the
lowest frequency layer. After that the data that is loaded at every level
corresponds to a increasingly smaller FOV. As a result the foveal area
is compact and can be loaded effectively. The sizes of the individual
resolution levels of the wavelet transform are defined in regard to the
properties of the human eye [19]. Like human perception, we decrease
the quality of the frames at a logarithmic rate [17]. The area with the
full video resolution which stimulates the most central foveola is only
about two percent wide [28].

Reference Ours Raw

Fig. 5: Our foveated decoding compared with the full-resolution ref-
erence frame. On the right, the information density of the foveated
decoding is visualised. The dashed line indicates the foveal region.

The inverse wavelet transform is executed over the same number of
data points as for a full resolution viewport but assumes the coefficients
to be zero for the surrounding regions. With foveated decoding, we
achieve a peripheral reconstruction in a visually appealing quality with
a small number of coefficients (see Figure 5). With the foveation, up
to 80% less data has to be loaded. The reconstructed areas are in
rectilinear form and follow recent findings, which indicate advantages
over a log-polar presentation [21].

4 EXPERIMENTS

In objective and subjective evaluations we compare our codec against
the common HEVC and AV1 codecs. The benchmarks for dis-
play speeds also include a tiled HEVC implementation from related
work [36].

4.1 Dataset
For the evaluation, we aim to analyse a particularly diverse set of
videos. Both computer-generated imagery (CGI) content and real
world recordings are considered. Furthermore, we investigate moving
camera trajectories as well as fixed recording positions.

The CGI reference frames are created with Unreal Engine 5 with
a high level of photorealism. The CGI scenes cover urban and nature
scenery. The City scene mainly contains geometrical structures and
straight lines and the recording takes place in a virtual New York
City. The Mountain scene depicts a natural landscape with trees and a
lake. The content of this scene contains a more heterogeneous shape
composition compared to urban imagery. In the CGI scenes the camera
trajectory moves along a predefined quarter circle path. The frames are
rendered as 360° stereo images with 8192×8192 pixel resolution.

The first set of real-world videos is recorded with a moving camera
trajectory and the display of rapid motions. Here, we use our videos
from previously published work [8, 9] which have a higher resolution
than typical moving-camera 360° videos due to our custom camera
setup. The second category considers videos with a fixed recording
position (further denoted by *). These videos were originally recorded
by Mühlhausen et al. [23]. The original real-world videos are recorded
with stereoscopic information in 6400× 6400-pixel resolution at 30
frames per second (FPS).

Reference Data Creation: Pre-recorded videos can cause two prob-
lems for the evaluation. For one, the frame rates typically do not
match the refresh rates of VR devices. Additionally, the data is al-
ready lossy compressed and can include serious compression artifacts.
In order to address both problems, we first downscale the video data
to 1024× 1024-pixel to get rid of high-frequency compression arti-
facts and then perform temporal interpolation and upscaling of the



Table 1: Display speeds. Tiling refers to Zare et al. [36]. The foveated
decoding (FD) is run with the high resolution version of our codec
(OursHQ), all values are averages over multiple runs and given in FPS.

Videos
AVG fps ↑

HEVC Tiling AV1 OursLQ OursHQ OursFD

CityCGI 57.32 88.24 52.7 220.96 194.17 228.8
MountainCGI 58.27 87.95 61.57 222.75 202.28 227.46
Downhill 60.21 93.21 48.32 193.88 180.70 206.65
Horse 62.6 95.94 50.45 197.17 181.18 207.16
Climbing 65.36 92.55 52.53 195.63 187.56 207.3
Walking 65.32 93.1 52.76 198.24 187.88 205.89
Cave* 66.53 111.08 53.93 209.22 207.12 210.28
Boat* 67.13 110.15 55.07 205.21 201.06 208.76

data with state-of-the-art neural network approaches. The resulting
frames are used as reference for our evaluation. The original video data
is downscaled with bicubic interpolation by OpenCV. The temporal
interpolation is run on the downscaled frames with RIFE [14]. The
information from both eyes is processed individually to avoid artifacts
at the edge. We increase the frame rate from the original 30 FPS to 120
FPS, which should be in line with the frequency of most modern VR
glasses. For the resolution upscaling we use Nvidia VFX to create the
final reference frames in 8196×8196-pixel resolution.

4.2 Objective Evaluation
We consider a high and low quality version of the wavelet-compressed
videos. The inter-frame transform is applied in sets of four frames and
compressed with an inter-frame threshold of 0.005. The frame-wise
threshold is chosen to be 0.1 and 0.25 for the high and low quality
version, respectively. The HEVC and AV1 encodings are performed
with FFmpeg. Regarding quality, for HEVC we use a constant rate
factor (CRF) of 30 (range 0–51) and for AV1 a CRF of 50 (range 0–
65). The videos of both codecs are encoded in the common YUV420
colour space. The OMAF inspired tiling method is realised with HEVC
encoded tiles with the fastest tiling scheme of Zare et al. [36]. However,
we extended their tiling scheme for stereoscopic videos to a 6-by-6 grid
layout (6-by-3 per eye). Following the former work, the middle row of
both eyes is chosen with 90° height and all other rows with 45° height
for a better central view performance.

We conduct all of our experiments on a commercially available
computer with a NVIDIA RTX 3090 graphics card and an AMD Ryzen
5950X processor. The video data is stored on an on-board SSD. A HTC
Vive Pro Eye is chosen as output device. All videos are displayed in our
self-programmed video player which uses the Vulkan API to utilise the
GPU. The decoding of HEVC and AV1 video data is performed with
the Nvidia NVDECODE API. Thereby, the HEVC and AV1 decoding
benefits from the hardware acceleration on the GPU. All videos are
created from 1200 reference frames with 8192x8192-pixel resolution.
To assure an equal comparison of all experimental conditions, we use
head and eye tracking data of participant recordings.

The results regarding computational time are shown in Table 1.
Our proposed codec allows for an average increase in performance
of 197% compared to HEVC and AV1 and an increase of 91% over
the tiling technique. This increase is even more significant when the
lower quality version of our codec is used. In the experiment, the
foveated decoding (OursFD) is applied on the wavelet-based video
with high quality settings. Due to the foveation, the performance
increases by 223% over HEVC allowing a better performance than
the lower quality wavelet-encoded videos. Please note that we used
the hardware accelerated on the GPU for the decoding of HEVC and
AV1. The dedicated decoding chips allow for significant increases in
decoding speed compared to conventional decoding. Additionally, the
compute shaders for the mapping and rendering can be executed in
parallel to the decoding through the dedicated chips. A comparable
chip for decoding wavelet transforms could also significantly improve
the performance of a wavelet-based codec while the compute unit can
be used for other tasks.

Table 2: Objective Quality Comparisons. The results from the compu-
tational metrics, WS-PSNR, SSIM (higher is better), and LPIPS (lower
is better), on all codecs compared with the reference frames.

Scene Metrics HEVC AV1 OursLQ OursHQ

CityCGI

WS-PSNR ↑ 17.89 17.24 16.13 17.13
SSIM ↑ .905 .89 .817 .916
LPIPS ↓ .124 .167 .268 .114

MountainCGI

WS-PSNR ↑ 18.95 18.06 16.44 17.43
SSIM ↑ .927 .925 .851 .933
LPIPS ↓ .158 .157 .32 .145

Downhill
WS-PSNR ↑ 17.86 14.64 16.51 17.99

SSIM ↑ .954 .95 .921 .961
LPIPS ↓ .082 .103 .161 .081

Horse
WS-PSNR ↑ 18.32 15.35 16.82 18.02

SSIM ↑ .968 .966 .939 .97
LPIPS ↓ .054 .07 .118 .057

Climbing
WS-PSNR ↑ 18.97 18.93 17.54 18.63

SSIM ↑ .973 .971 .952 .976
LPIPS ↓ .051 .066 .115 .056

Walking
WS-PSNR ↑ 18.02 18.13 16.83 18.22

SSIM ↑ .97 .969 .928 .967
LPIPS ↓ .05 .064 .117 .05

Cave*
WS-PSNR ↑ 20.89 20.99 18.88 20.15

SSIM ↑ .971 .972 .96 .972
LPIPS ↓ .039 .04 .08 .046

Boat*
WS-PSNR ↑ 19.44 19.86 17.54 18.84

SSIM ↑ .984 .986 .954 .978
LPIPS ↓ .03 .027 .078 .036

Table 3: Compression ratios of the video files in relation to the un-
compressed data. The compression ratios are with respect to the full
360° FOV.

CityCGI MountainCGI Downhill Horse Climbing Walking Cave* Boat*

HEVC 651:1 973:1 431:1 810:1 1059:1 1039:1 5120:1 7408:1
AV1 933:1 1482:1 725:1 1524:1 1994:1 1994:1 9888:1 12659:1

Tiling 102:1 102:1 80:1 90:1 83:1 90:1 204:1 340:1
OursLQ 176:1 250:1 147:1 187:1 250:1 185:1 714:1 312:1
OursHQ 52:1 75:1 77:1 100:1 128:1 100:1 416:1 117:1

We compared the results’ quality of all codecs by the commonly
used metrics WS-PSNR, SSIM [35], and LPIPS [37]. The given values
are averages over all frames and compared with the uncompressed
reference frames (see Table 2). In terms of image quality our method
performs equally to the other codecs, HEVC/H.265 and AV1, when
high quality settings are chosen. As can be expected, the image quality
is on a lower level when the low quality parameters are chosen for the
wavelet-based encoding.

The compression rates of the wavelet files in both quality config-
urations as well as the comparison techniques can be seen in Table 3.
With our wavelet-based approach, we are able to compress the raw
information to over one hundredth in size for most videos. Despite this
significant reduction in file size, our codec does not yet achieve the com-
pression efficiency of HEVC and AV1 in its current state. We would
like to emphasize that the focus of this work is on decoding speed and
that our wavelet codec is not optimized to produce the smallest possible
files. The tiled HEVC videos by the technique of Zare et al. [36] are on
average twice as large as our wavelet-compressed video files due to the
significant compression losses of the tiling process.

4.3 Perceptual Evaluation
In a next step, we compare the codecs in terms of observer’s prefer-
ences to reveal subtle perceptual differences that were not found by the
objective metrics. In this perceptual experiment, we are particularly



Table 4: Perceptual results. The top half refers to the uncorrected data of all participants (n = 23). In the bottom half the results are corrected for
consistency (nSpeed = 21,nQuality = 15).

% PreferencesANALYSIS CONDITION SCENE
Ours vs. AV1 Ours vs. HEVC AV1 vs. HEVC

ζ u χ2 p

City 95.65% 82.61% 4.35% 0.96 0.68 48.13 <.0001
Speed Mountain 100.00% 56.52% 8.70% 0.96 0.55 39.09 <.0001

AVG 97.83% 69.57% 6.52% 0.96 0.60 84 <.0001
City 56.52% 56.52% 21.74% 0.87 0.08 8.13 .0434

Quality Mountain 86.96% 43.48% 26.09% 0.74 0.23 18.22 .0004

Raw Data

AVG 71.74% 50.00% 23.91% 0.80 0.13 20.55 .0001

City 100.00% 80.95% 4.76% 1 0.72 46.24 <.0001
Speed Mountain 100.00% 57.14% 4.76% 1 0.59 38.62 <.0001

AVG 100.00% 69.05% 4.76% 1 0.65 82.48 <.0001
City 80.00% 60.00% 20.00% 1 0.20 11.4 .0097

Quality Mountain 86.67% 46.67% 6.67% 1 0.39 19.4 .0002

Corrected
for
Consistency

AVG 83.33% 53.33% 13.33% 1 0.31 29.60 <.0001

interested in analyzing to what extent the higher frame rates we can
achieve with our wavelet codec also contribute to a better VR expe-
rience. As before, HEVC and AV1 serve as comparison techniques.
The wavelet videos use the high quality version that showed to be most
comparable to the other codecs in quality while still maintaining high
display speeds. Due to the better data utilization of a wavelet-based
codec, a higher resolution of the video or a higher frame rate can be
provided. Thus, there are two conditions to be considered: the videos
are in the same resolution but have different frame rates (Speed con-
dition), or the videos are in different resolutions but provide the same
frame rate (Quality condition). In the Speed condition all videos are at
a resolution of 8192×8192 pixels. While the comparison techniques
provide common 30FPS in this condition, the wavelet videos provides
double the frame rate (60FPS) based on the results of the display speed
measurements. In the Quality condition the frame rate of all videos is
set to 60FPS but the HEVC and AV1 videos, here, have a resolution
of 4096× 4096 pixels. The length of at videos is 10 seconds. For
the perceptual evaluation we only use the CGI scenes. The upscaled
real-world videos have a corrupted stereo view because the upscal-
ing algorithms are not designed for stereo footage. This display error
should be irrelevant for the image-based metrics, but makes perceptual
experiments impossible.

As the abstract feeling of comfort in a VR experience cannot be
represented by a linear scale, we utilize the paired comparisons tech-
nique [16]. Given the same video with two different encodings played
immediately after each other, the participants were instructed to choose
the video they would prefer for a presentation in VR. The question was
intentionally kept open and participants were free to base their decision
on the visual quality, the temporal smoothness of the video, or a lower
incidence of cybersickness.

Given three codecs, there are three possible comparisons per video:
Ours vs. AV1, Ours vs. HEVC, and AV1 vs. HEVC. This results in a
total of 12 decisions per person given two scenes for both conditions.
In the experiment, the order of the paired stimuli comparisons for each
participant was counterbalanced to avoid side effects.

A total of 23 participants took part in the experiment (10 females,
age range = 22−59, avg. age = 34.83, SD = 13.04) resulting in 184
votes per codec. The videos were shown in a HTC Vive Pro Eye HMD.
For every comparison, the participants were ask to maintain a fixed
head position to compare the same part of the 360° video.

4.3.1 Analysis and Results
On a first analysis, the voting of the participants (n = 23) leads us to
the displayed results in the top half of Table 4 ("Raw Data", column "%
Preferences"). The results show the analysis for each scene as well as
an analysis per condition combining both scenes (labelled as "AVG").

In order to assess the results of the paired comparisons we follow
the methodology from Setyawan and Lagendijk [26]. We first study the
consistency of choices within one participant as well as the agreement
in choices among all participants. The coherence of the answers of the
participants is indicated by the coefficient of consistency ζ ∈ [0,1],

with ζ = 1 implying perfect consistency. Low consistency values
of single participants can indicate that these individuals had difficul-
ties to differentiate between the stimuli and thus, we can expect their
judgement abilities to be worse than the average. As the number of
methods m = 3, ζ < 1 can only arise with the occurrence of one kind
of circular triad such that C1 →C2 →C3 but C3 →C1. In Table 4 we
present the coefficient of consistency as an average over all participants.
The consistency of choices of single participants does not necessarily
mean that identical choices were made between all participants. The
diversity of preferences for the number of participants n is described
by the coefficient of agreement u. Complete agreement is achieved
with u = 1, meaning that all participants favoured the same method
for all decisions. High disagreement indicated by low u values, on
the other hand, suggests that participants had difficulties to make a
joint choice. Disagreement may suggests either that the stimuli were
perceived as not distinguishable or a general split of opinions about the
stimuli. Here, the minimum u, and accordingly complete disagreement,
is given by umin =− 1

(n−1) ≈−0.045. By the definition of Kendall and
Babington-Smith [16], the coefficient of agreement u is derived by

u =
2τ(n

2
)(m

2
) ,whereτ =

m

∑
i=1

m

∑
j=1

(
ai j

2

)
(5)

with ai j is the number of times method i is chosen over method j,
whereby i ̸= j. As before, the number of participants is denoted by n
and the number of methods by m.

We determine the statistical significance of u by testing against the
null hypothesis that all votes were chosen randomly. For a significant u
we can conclude the alternative hypothesis that the agreement is above
the value one would expect from random choices. To determine the
significance under the null hypothesis we perform a chi-squared test
(χ2). As proposed by former research [27], with our n we can derive
χ2 in simple form.

χ
2 =

(
m
2

)
[1+u(n−1)] (6)

Since we compare three codecs, the χ2 distribution is evaluated with(m
2
)
= 3 DOF. Therefore, the statistical significance at level p derives

by χ2
3 .

The analysis of the raw data for consistency and agreement is shown
in Table 4. While the participants show a high consistency, the coeffi-
cient of consistency ζ for the Quality condition is considerably lower
than for the Speed condition. The difference in agreement is even
more pronounced and the participants show clear disagreement in the
ratings of Quality (numbers highlighted in red). This mismatch is most
apparent in the city scene where results are not statistically significant
anymore for the targeted threshold of p < .01.

A more in-depth analysis of the consistency of individual ratings
shows the cause for this outcome. In the Quality condition, a total of



eight participants were not able to properly distinguish between stimuli,
leading them to produce triads. Also, two participants had difficulties
emitting judgement in the Speed condition. All the rest of our partici-
pants show perfect judgement capability (ζ = 1, no triads), indicating
that the inconsistencies arised from the individual participant’s ability
to judge and not from a problem with a consensus between participants.
Therefore, we correct the analysis for a consistent result and remove
the votes for the entire condition of all those participants who did not
show perfect consistency. By rerunning the analysis with the votings
corrected for perfect consistency (nSpeed = 21,nQuality = 15) we can
obtain the values corresponding to participants with perfect discerning
abilities. These results are show in the bottom half of Table 4 ("Cor-
rected for Consistency"). While the Quality condition still seems to
be more controversial, the agreement of the participants for this condi-
tion increases substantially (numbers highlighted in green). With the
correction, all differences in preference are statistically significant for
p < 0.01.

In general, the results of the perceptual study indicated that the
videos using both our codec and HEVC were favored over AV1 for
all conditions. The conclusions of the comparison between our codec
and HEVC are dependent on the analyzed condition. While the partici-
pants clearly favoured our codec in the Speed condition, the perceived
quality overall is on par with the H.265 compressed video. A more
in-depth analysis reveals the choice of scene as a decisive factor for the
participants’ preference. Straight lines and geometric structures are key
attributes of urban scenery. In these representations with man-made
content, quality differences and artifacts seem to be more conspicuous.
The Mountain scene, on the other hand, is a natural scene and, as such,
its content is less structured and highly semantically homogeneous
due to the recurring textures. In this scene, the participants showed
difficulties to distinguish the quality of the different compression tech-
niques. These observations are consistent with the findings of previous
research [4, 25]. In the Speed condition, the scene attributes seem
to became even more salient for the observers’ choice, drifting their
preferences towards our method (preference > 80%).

5 DISCUSSION AND LIMITATIONS

In the following, we discuss further key points of consideration and
address limitations of the current implementation

Experimental Results. We compared our wavelet-based codec
against two common video codecs and previous work. For the eval-
uation, we considered a low and high quality version of the wavelet-
encoded videos, because in a practical application either quality or
speed may be prioritised. The results show that the codec can be op-
timised for such requirements by changing the encoding parameters.
However, even at the highest quality, we achieve significantly higher
decoding speeds than the other methods. The foveated decoding tech-
nique leverages the properties of the human visual system, resulting in
peripheral resolution differences that are unnoticeable to VR users com-
pared to fully resolved viewports [19]. At the same time, the foveated
decoding allows for the highest decoding speeds. In a perceptual exper-
iment, we studied the importance of the frame rate and video resolution
for the perceived quality of the VR experience. The results suggest
that for 360° videos in VR, the frame rate is of significantly greater
importance to users than the image quality. This emphasis on frame
rate for the user experience is consistent with former research [1].

Single Operation Point. Our codec is designed for a very specific
use-case. The core motivation is to have 360° videos with a resolution
and display speed that does not induce cybersickness and is pleasant to
watch. In our investigations, we explored in detail the single operation
point that best covers this scenario. For a fair comparison we chose the
parameters of our codec so that the quality is on the same level. With
this baseline, we then measured the speed of the methods. A broader
range of quality-rate scenarios can be explored in the future to utilize
wavelet-based coding for a verity of applications.

Streaming. So far, we have primarily addressed videos that are
stored on a local drive. Online streaming is another common way to
retrieve video data. With online streaming, the amount of data that
is transmitted is much more relevant due to bandwidth limitations.

For these limitations, a wavelet-based codec benefits from the direct
viewport-dependent streaming from file. This property allows to re-
duce the transfer rates by up to ten times compared to the total size
of the video. In its current form, our encoding is not yet optimized
for real time execution, which we plan to address as a natural next
step. Especially for standalone HMDs, over-air transmission latencies
and data transfer rates are often a bottle-neck of the system. In this
scenario it would be beneficial to move the decoding of the wavelet
videos to be performed by the HMD hardware. The encoded version of
the video is then streamed and decoded on the HMD, thus, reducing the
needed bandwidth and transfer time. Given the current hardware devel-
opment, decoding times can be expected to be inferior to a dedicated
consumer GPU. Nevertheless, with further improvements of standalone
VR HMDs, an on-device decoding will become highly interesting for
cloud-operated video streaming.

File Size. Our wavelet format does not use any container format but
is stored in simple binary form. Neither is a color transformation per-
formed, for example to the YUV space. Such techniques are applied by
other codecs to reduce their file sizes to the minimum while preserving
the best possible quality. In this paper the major focus was on display
speed. In future work such techniques may be introduced to further
reduce the file sizes of wavelet-based video coding.

Reference Data. Our objective with the reference data scaling of
the real-world videos was to generate uncompressed high-resolution,
high frame-rate video data. We used a combination of downscaling
followed by AI-based upscaling to remove compression artifacts from
the original videos. This removal is not perfect and it can be assumed
that the compression rate of a wavelet-based codec is significantly
higher for raw footage. Such a use of a wavelet-based codec can only
be achieved when the encoding is directly performed by the capturing
device with the native color information.

Professional Filming. The videos from our experiment are consid-
ered as casual recordings. Nevertheless, 360° videos are not only used
by amateurs, but also by professional filmmakers. For professional
filming, it can be necessary to display different areas of a frame in dif-
ferent qualities, such as the background or the masks of an actor, which
stands out as artificial in high resolutions. With conventional methods,
this procedure requires post-processing or recapturing of the video.
With a wavelet-based codec a pre-adjustment is not necessary and the
video can be stored in full resolution. Individual quality levels may be
chosen at decoding time for defined parts of the video, comparable to
our foveated decoding approach (cf. Sec. 3.7).

Eyetracking. In VR, eye tracking is nowadays mostly used for
computer-generated content, where foveation allows for significant
increases in rendering speed. The foveated decoding of our codec
opens up the opportunity for an broader use of eye tracking in VR
where it can be used to increase the playback speed of 360° videos
through unobtrusive quality gradation in the peripheral area.

Wide FOV. When the FOV gets unusually wide, this would affect
the performance of our approach since the decoding is viewport de-
pendent. The headset with the widest FOV currently on the market is
the StarVR One with an overall horizontal FOV of 210° and a vertical
FOV of 130° [13]. Exploring this scenario, we found that with wavelet
coding we are still able to achieve > 100 FPS with the high quality
configuration in all scenes. With foveated decoding applied, the frame
rate is significantly higher. In comparison, the tiling approach with
this wide FOV no longer yields any performance benefit and actually
performs worse than the native full frame HEVC decoding (≈ 50 FPS).

6 CONCLUSION

In this paper we proposed wavelet-based video coding for fast and high-
resolution playback of 360° videos. We showed that our wavelet-based
compression approach allows for selective loading and decoding of
arbitrary video regions, which in the case of 360° videos is key for a fast
decoding. While in our experiment our codec reached display speeds
at least two times higher than the other methods tested, the quality
remained at a comparable level. The importance of high frame rates
for a good VR experience is supported by the results of our perceptual
experiment. In addition, with our codec we have introduced foveated



decoding, allowing for an unobtrusive quality decrease in the outer
regions of the view. Foveated decoding can be applied on run-time
and further increases the decoding times. In conclusion, wavelet-based
video approaches solve the problems that are raised by DCT codecs
when a fast or viewport-dependent playback of 360° videos is required.
Especially for VR environments, wavelet-based codecs show to be a
valuable extension, offering the opportunity to display 360° videos in a
quality and speed comparable to renderings of virtual worlds.
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